q-Variation and Commutators for Fourier Multipliers

نویسنده

  • Joan Cerdà
چکیده

If Tμ is a Fourier multiplier such that μ is any (possibly unbounded) symbol with uniformly bounded q-variation on dyadic coronas, we prove that the commutator [T, Tμ] = TTμ−TμT is bounded on the Besov space B p (R ), if T is any bounded linear operator on a couple of Besov spaces Bj ,rj p (R) (j = 0, 1, and 0 < σ1 < σ < σ0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutators for Fourier multipliers on Besov Spaces

The mapping properties of commutators [T,M ] = TM −MT , for operators between function spaces, and their various generalizations play an important role in harmonic analysis, PDE, interpolation theory and other related areas. A typical situation arises when M = Mb is the pointwise multiplication by a function b and T is a Calderón–Zygmund operator on R. Then well– known results of A.P. Calderón ...

متن کامل

Multipliers of pg-Bessel sequences in Banach spaces

In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.

متن کامل

Hyperbolic L Multipliers are Translations

The associated evolution operators which map u(0, ·) to u(t, ·) is the family of Fourier multipliers e, e := F e F . (2) Our main result shows that boundedness in L for p 6= 2 is very rare. The evolution operator is L bounded if and only if it consists of simple translations. If the multiplier (2) is an L multiplier then it is an L multiplier for the dual index, p+q = 1. By interpolation it is ...

متن کامل

DUHAMEL SOLUTIONS OF NON-HOMOGENEOUS q-ANALOGUE WAVE EQUATIONS

q-analogue non-homogeneous wave equations are solved by a Duhamel solution strategy using constructions with q-analogue Fourier multipliers to compensate for the dependence of the analogue differential Leibnitz rule on the parity of the functions involved.

متن کامل

New Thoughts on the Vector-valued Mihlin–hörmander Multiplier Theorem

Abstract. Let X be a UMD space with type t and cotype q, and let Tm be a Fourier multiplier operator with a scalar-valued symbol m. If |∂m(ξ)| . |ξ|−|α| for all |α| ≤ ⌊n/max(t, q′)⌋ + 1, then Tm is bounded on L(R;X) for all p ∈ (1,∞). For scalar-valued multipliers, this improves the theorem of Girardi and Weis (J. Funct. Anal., 2003) who required similar assumptions for derivatives up to the or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006